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Abstract-It is “standard” to analyze data from a clinical trial using a narrowly defined 
probabilistic mathematical model. This paper examines the ways in which mathematical 
models, in general, can be used in clinical research, the meaning of probability in the 
examination of clinical trials, and the philosophical flaws in the current “standard” 
method. An alternative formulation is proposed which is more flexible and which comes 
closer to meeting the needs of medical science. In this alternative formulation, 
significance tests are applied to the data from a study only as a first step to determine 
whether the data are worth further examination. After that, clinically relevant questions 
are answered with 50 and 95% confidence bounds. The initial significance test is tailored 
to be directed at a narrow class of hypotheses that, in turn, are dictated by clinical 
expectations. 

Hypothesis tests Estimation Probability Cause-and-effect Clinical studies 

1. INTRODUCTION 

The purpose and direction of this paper is 
depicted in Fig. 1. The box entitled “Inductive 
Reasoning” represents what most of us do most 
of the time. We observe events and try to 
generalize, in order to anticipate future events, 
or to relate events to each other, or to “under- 
stand” what has happened. When we do “sci- 
ence”, we engage in inductive reasoning 
carefully and with experimental checks on the 
conclusions. The figure shows three types of 
models that can be used in inductive reasoning. 
Sections of the box are not covered by these 
models, indicating that there are other ways of 
engaging in inductive reasoning. Some, such as 
leaps of intuition, often govern our ordinary 
day-to-day reasoning but are not usually con- 
sidered adequate for science. The three models 
overlap in pairs, so some forms of probabilistic 
models are the same as some forms of determin- 
istic models, and some forms of logical models 

are the same as some forms of deterministic 
models. But, logical and probabilistic models do 
not overlap-and there’s the rub. This paper is 
concerned primarily with how the overlap and 
lack of overlap in Fig. 1 affect the interpretation 
of data from clinical trials, but the problem is 
much more general than that, and the reader 
can probe those generalities in the references. 

The standard view of controlled clinical trials 
is that the design and the eventual analysis of 
the data are governed by statistical consider- 
ations, that protocols should include descrip- 
tions of null hypotheses that will be run and that 
the planned number of patients be justified by 
power calculations [l]. However, it may be 
useful to separate the scientific experiment from 
the statistical methodology. Horwitz et al. [2] 
point out that we can consider the randomized 
controlled clinical trial as a paradigm with 
aspects that can be adopted to other situations. 
Suppose we consider the complete paradigm as 
nothing more than a scientific experiment which 
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allows for useful comparison of treatments in&- 
pendent of how the data will be examined. We 
can, then, step away from the standard statisti- 
cally based approaches and ask a simple 
question: 

What are useful ways of examining the data 
that arise from the trial? 

For instance, we might identify patients who 
“respond” to treatment and describe the base- 
line characteristics of those patients, in an 
attempt to define a class of patients who might 
be best treated this way. Or, we might examine 
the measurements of disease over time in 
the control group in order to establish a 
“typical” pattern and look at individual patients 
on the experimental treatment to see how 
well they follow this “typical” pattern. One 
could think of other non-statistical sum- 
maries of the data that might be useful for 
predicting what the treatments will do in future 
patients. These may not produce very good 
predictions, and they will lack the ability of 
statistical methods to measure the degree of 
uncertainty associated with them. But, it is 
enlightening to consider them as possible ap- 
proaches and to ask why we would use proba- 
bilistic models instead. 

One answer is that probabilistic models are 
sophisticated mathematical models that have 
proven useful in the analysis of scientific data, 
allowing us to distinguish differences due to 
treatments and something else (termed “random 
noise” for purposes of modeling). However, it 
must be recognized that many branches of 
scientific research flourish without probabilistic 
modeling or with, at most, a minimal use of 
averages and standard deviations. These include 
molecular biology, mathematical biology, 
physiology, and physical chemistry. 

The standard approach does more than im- 
pose probabilistic models on clinical trials, it 
imposes a very specific type of probabilistic 
model, which will be described in Section III. 
One result is a schizophrenic attitude towards 
the analysis of data from controlled trials that 
occurs when the authors examine the results and 
locate subsets of patients that seem to “re- 
spond” differently or unexpected “effects” seen 
in measurements that were not expected 
to change. This is seen in the MRFIT study 
[31, which discovers differential responses 
associated with different patterns of baseline 
variables and accompanies these “findings” 
with the statement: 

“It must be emphasized that this kind of analysis 
does not preserve the randomized controlled -de- 
sign of the MRFIT . . .” 

Similarly, about 60% of the paragraphs in the 
description of the LRC-CPPT Trial [4] deal with 
secondary end points although the methods 
section warns 

“This method of determining significance was 
used for the primary end point of the study. Other 
statistical tests reported used the nominal level of 
significance. The reader is cautioned that in- 
terpretation of these nominal P values should 
include the possibility that some may be signifi- 
cant by chance . .” 

It seems reasonable to medical scientists to 
use the data from controlled trials to discover 
unexpected clinical effects. However, they are 
constrained by a community of orthodox statis- 
ticians whose best advice on dealing with 
multiple end-points and interesting subsets of 
patients is put forward by Pocock et al. [4], 
who warn that all comparisons must be 
described in advance. But, the purpose of scien- 
tific research is to discover things that are 
not known in advance. In fact, a case has been 
made [5] that is unethical to run a randomized 
controlled trial, which will assign patients to 
inferior treatment, when the only purpose of the 
study is to confirm what is already believed 
to be true. 

Some statisticians, such as Abt [6], will throw 
a bone to the medical scientist, allowing for 
“Exploratory Data Analysis”, provided the sci- 
entist penalizes all such explorations by bowing 
to the tyranny of the Bonferonni bounds and 
requiring extremely small p-values for “signifi- 
cance”. As will be shown later, the basic prob- 
lem here is that, even within the framework of 
probabilistic modeling, the use of p-values as an 
exploratory tool is inappropriate, so this is no 
solution. 

When what is essential to a particular type of 
mathematical modeling appears inappropriate 
to the experimenters who are interested in scien- 
tific conclusions, there are serious philosophical 
problems at hand. Philosophy is not an abstract 
useless mental activity of “philosophers” to be 
buried in philosophical journals and never re- 
ferred to by “real” people. Philosophy provides 
the logical and epistemological underpinnings 
of intellectual activity. When we engage in 
intellectual activity, such as planning and ana- 
lyzing clinical trials, we rest our activity on 
certain philosophical positions, which are sel- 
dom stated and not always fully understood by 
those engaging in the activity. 
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Thus, this is a philosophical article designed 
to consider reasonable answers to the question 
posed at the beginning of this section, how best 
to analyze the data from a clinical trial. Section 
II is a conscious act of destruction. In it, the 
philosophical underpinning of the use of proba- 
bilistic models is examined. The timbers on 
which these methods rest is exposed. It is shown 
that what we wish to do with these models 
cannot be done, due to fundamental mathemati- 
cal (or rather meta-mathematical) limitations. 
Section III continues the destruction, applying it 
to the methods of statistical analysis now widely 
used in clinical studies, showing that these 
methods are arbitrary and have nothing to do 
with the goals and methods of clinical research. 
Section IV salvages a few beams from the debris 
of Sections II and III and suggests alternative 
approaches to probabilistic modeling of clinical 
studies. 

The topics of this paper have been discussed 
more thoroughly in the mathematical and philo- 
sophical literature. There is nothing new here, 
and in the framework of a short article, not all 
the subtleties that are involved can be covered, 
nor does this article provide a complete bibli- 
ography. Rather, this is an attempt to acquaint 
the readers of this journal with some of these 
problems. A more complete discussion along 
with a fully anotated bibliography can be found 
in Ref. [22]. 

The still ongoing discussion in the mathemati- 
cal and statistical literature of these problems 
shows that what medical scientists would like to 
do with the data from these studies (such as 
examine results from subsets of patients) is not 
illegal, illogical, or sinful. If it clashes with the 
standard formulation of hypothesis testing, it 
may be that this activity is inappropriate or it 
may be that the mathematical model is inappro- 
priate. This paper investigates that latter 
possibility. 

One more disclaimer. This discussion of 
philosophical foundations is focused on the 
analysis of data from controlled randomized 
clinical trials. No attempt is made to extend the 
discussion to sample surveys or to the develop- 
ment of diagnostic tests, or any other aspect of 
modern science which makes use of probabilistic 
models. 

II. PROBLEMS WITH PROBABILISTIC MODELS 

Figure 1 displays the relationship between 
scientific research and mathematical models. 

The box depicts what philosophers call induc- 
tive reasoning. This is the intellectual activity 
which uses observed data to construct descrip- 
tions of reality more general than the obser- 
vations. The problems of whether inductive 
reasoning is possible or whether “reality” is real 
will not be examined. Let us start with inductive 
reasoning as an activity. 

As indicated in Fig. 1, there are three types of 
mathematical models within which we can ex- 
press the procedures and conclusions of induc- 
tive reasoning. 

Probabilistic Models 
Deterministic Models 
Logical Models 

Areas in the box are not covered by the 
regions of mathematical models, because we can 
engage in inductive reasoning without math- 
ematical models. A child goes out in the rain 
and gets wet, so she concludes she will get wet 
whenever the sky darkens and water splashes 
against the ground. There was no planned ex- 
periment, no replication, and obviously no 
modeling. However, scientific methods devel- 
oped over the past 300 years use mathematical 
modeling, and it is obvious that such models 
lead to useful conclusions. Figure 1 displays the 
three types of models as extending beyond the 
box representing inductive reasoning. The 

Fig. 1. The interplay of mathematical models, abstract 
mathematics, and inductive reasoning. 

Abstract mathematics 

INDUCTIVE REASONING 
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mathematics involved in these models can be 
investigated without reference to experiments or 
without attempting to describe “reality”. 

One might quibble that these three models 
can be subsumed in a greater abstraction, but it 
is important to keep the differences among these 
models in mind when considering how to ana- 
lyze the data from a clinical trial. It is possible 
to use deterministic models to describe biologi- 
cal phenomenon. This is done, for instance, 
when large arrays of differential equations are 
used to model and simulate patterns of arrhyth- 
mia as defined by electrical activity across the 
surface of the heart muscle [7]. 

Similarly, logical models have also been used 
in inductive scientific reasoning. Most of the 
advances in computer techniques involve logical 
structures. The theory of neural networks [S] is 
based on Boolean algebra (a tool of mathemati- 
cal logic). Some techniques of image processing 
on computers use statistical models, but most of 
the successful ones use simple iterations of 
logical or deterministic equations [8]. 

Thus, thejrst tearing up offoundations is the 
recognition that one can legitimately engage in 
inductive reasoning without invoking probabilistic 
models. 

Figure 1 shows an overlapping of logical and 
deterministic models and of deterministic and 
probabilistic models within the box. However, 
there is a synapse between probabilistic models 
and logical models. This displays a well-known 
(among philosophers) theorem [9] which often 
escapes those who use statistical methods. When 
we engage in inductive reasoning we would like 
to describe “cause” and “effect”. We would like 
to say that treatment A “causes” patients to be 
cured of disease X. But, cause and effect is a 
slippery set of concepts, and the philosophical 
literature is filled with the paradoxes that 
emerge. Mathematical logic finesses this prob- 
lem by defining something which acts like 
“cause” and “effect” in most of the ways we 
want to use those ideas. This is the concept of 
material implication. We say A implies X, 

A+X. 

In mathematical logic, material implication is 
equivalent to the counter positive 

not X+not A. 

There is something like this in probabilistic 
models. This is the concept of conditional prob- 
ability. We can talk about the probability of X, 
given A, 

Prob(X( A}, 

and it is tempting to say that, if Prob{XIA) is 
very close to 1.0, we can conclude that A +X. 
However, the conditional probability that mim- 
ics the counter-positive is 

Prob{not Alnot X}, 

and it is very easy to create situations where 
Prob{XlA} is very high but Prob{not A lnot X} 
is arbitrarily small. 

Thus, the second rotten timber is exposed. It 
is impossible to use probabilistic models alone to 
come to the type of conclusions we would like to 
make in inductive reasoning. 

Keynes [14] proposed that we need to 
associate a set of weights with units of exper- 
imental evidence, that are independent of 
the calculated probabilities, in order to come 
to useful conclusions. This is what happens, 
for instance, when the medical scientist 
views some studies as “more reliable” than 
others and reaches conclusions that may be 
based on interpretation of only some of the 
evidence. 

Suppose, however, we plunge ahead and use 
probabilistic models to aid us in inductive 
reasoning (recognizing that we will need some 
additional ideas or information in order to 
convert the conclusions into “cause” and 
“effect”). The mathematical concept of prob- 
ability is well defined. Any graduate student in 
mathematics can manipulate the symbols and 
theorems of mathematical probability. But, 
when we come to applying probability to “real” 
life, what does probability mean? For instance, 
suppose we compute a 95% confidence bound 
on the odds ratio for probability of death due 
to MI comparing two treatments. What is that 
95% of? There is an answer from within the 
orthodoxy of hypothesis testing, but let us rip 
up a few more floor boards before accepting it 
at face value. 

Figure 2 shows the region of overlap between 
probabilistic models and inductive reasoning in 
greater detail, with different views of prob- 
ability. Mathematically, probability is a 
measure of elements of an abstract space. So, we 
need to identify the space which is being 
measured. We can think of it as a set of events 
that can be observed or as a set of propositions 
about reality. When he proposed the Latin word 
we now call “probability”, in the Ars Conjec- 
tad, Bernoulli made it clear that he considered 
probability to be a measure of the validity of a 
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Fig. 2. Probabilistic models further refined. 

proposition. That is, to Bernoulli, the only use 
of probability was to make statements like: 

It is XX% probable that this treatment 
is efficacious. 

The abstract space is, in this view, the set of 
statements or hypotheses we can make about 
reality. The major problem with this view is that 
it is not clear how one might calculate 
probabilities on this space. 

There are two general interpretations of prob- 
ability as a measure of propositions. One views 
the probabilities as existing independent of the 
observer, estimable from the data and other 
external sources. The other view is that prob- 
ability is a measure of the personal belief of an 
individual scientist. Thus, in the first view, we 
make a statement like 

The probability that the odds ratio lies between 
1.03 and 2.25 is 95%. 

In the second view, we make a statement like 

I am 95% sure that the odds ratio lies between 
1.03 and 2.25. 

The math stat literature has extensive discussion 
of these two views. I, for one, find myself 
convinced by the arguments of L. J. Savage [lo] 
that only the personalistic view avoids serious 
problems of definition. Savage proposed that 
each person carries an internal probability 

measure about propositions, which is “coher- 
ent”. It has to meet a small number of con- 
ditions, in order for this personal probability to 
obey the rules of mathematical probability. 

Unfortunately, most psychological exper- 
iments that have been run to elicit this coherent 
set of probabilities from individuals have failed 
to do so [ 1 I]. It would appear that most people 
are not coherent when dealing with probabilities 
ranging from 0 to 1. The only personal prob- 
ability statements that people are consistent 
about are statements about very sure probabili- 
ties and 50:50. A probability “space” which 
consists of only things that are only very sure or 
50:50 is not an interesting one, but it is coher- 
ent. Thus, the experiments lead us to conclude 
that personal probability can be used only when 
dealing with these two types of events. 

In Fig. 2, there is a second way of describing 
a probability space in terms of “reality”. This 
defines probability as measuring sets of observ- 
able events. Fisher and “Student” [12] proposed 
that the experimental result we observed is one 
of a large set of possible results, Probability is 
measured on the set of all possible experimental 
results. Later, Fisher refined this idea and pro- 
posed that we could think of the act of random 
assignment as generating the probability space 
[13]. In this case, we note that the observed 
results for individual patients are fixed and 
compute probabilities in terms of the set of all 
possible permutations of treatments among 
those patients. 

Another view is that the probability of an 
observable event is the percentage of times that 
event will occur in a long run of identical or 
nearly identical experiments. This is the fre- 
quentist definition. It lies at the heart of the 
standard hypothesis testing formulation. Unless 
one accepts the frequentist interpretation, the 
reasons for treating the standard formulation as 
an optimal procedure disappear. 

At about the same time that Neyman and 
Pearson [I 7-191 were resting their formulation 
of hypothesis testing (which became the stan- 
dard one) on a frequentist definition, Keynes 
had already shown that the frequentist defi- 
nition is not a well-defined mathematical con- 
cept and that use of this definition leads to 
serious inconsistencies [ 141. 

Thus, the next set of rotten beams: 
The link between probability calculations and 

“reality” has only two philosophically solid 
forms. (1) We can think of probability as a 
measure of personal belief. (2) We can compute 
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probabilities based on all possible permutations of 
treatment assignment. In the first case, we can 
make statements about propositions, but we have 
to recognize that those statements will be intern- 
ally consistent for most people only if we restrict 
them to statements about almost sure probabili- 
ties and probabilities of 50%. In the second case, 
probability is very well de$ned, but calculations 
can only be made where patients have been 
randomly assigned to treatment before the start 
of the study. 

To summarize this section: 

(4 

m 

Probabilistic models are not the only types 
of mathematical models that can be applied 
to the data from clinical studies. 
There is no link between a conditional 
probability statement and material impli- 
cation (much less between probability and 
“cause” and “effect”). To go from a prob- 
abilistic statement to a logical implication 
requires the use of ideas external to the 
probabilistic model. 
The only solid definitions of probability in 
terms of “reality” are personal probability 
statements about propositioins (and then 
restricted to “very sure” and 50: 50) and 
probabilities based on permutations of ran- 
dom assignments. 

A thorough discussion of these problems can be 
found in Cohen [15]. 

III. HYPOTHESIS TESTING VERSUS 
SIGNIFICANCE TESTING 

Popper has pointed out that a fundamental 
characteristic of a scientific theory (as opposed 
to other descriptions of reality) is that a scien- 
tific theory is falsifiable [15]. One can construct 
an experiment or describe an observation that 
would show the theory to be false, if such-and- 
such an event were observed. There are times, 
however, when what can be observed is highly 
variable and the chances of observing a clearly 
falsifying event are very small. Suppose, for 
instance, that a new NSAID drug is accused of 
causing a higher than expected rate of bleeding 
ulcers in elderly patients. Suppose we have good 
enough records to estimate the incidence of this 
event in patients 65 or older treated with other 
similar drugs at less than 3%. We observe 50 
patients of this age on the new NSAID and none 
of them develops a bleeding ulcer. This, by itself 
is not a falsifying event. After all, if we had an 
urn filled with a large number of balls, 3% of 

which were red and the rest white, it is perfectly 
possible to draw 50 white ones in a row. 

Now, suppose that we continue to observe 
patients until we have 300 of them, none of 
whom develops the event. It is still not a falsify- 
ing event, since it is possible to draw 300 
consecutive white balls from the urn. However, 
it is highly improbable (less than 1 in 1000). 
Thus, if we continue to observe patients and 
none develop the event, we have to conclude 
that, if the theory is correct, we have observed 
a highly improbable event. 

Since we don’t often observe improbable 
events, we can take this as a falsifying event. 

R. A. Fisher refined this method for con- 
trolled experiments by defining a straw man 
“hypothesis” which he knew in advance was 
probably not true [16]. This straw man null 
hypothesis was that the different treatments 
had no effect on the outcome. He then produced 
a single number, a test statistic, calculated 
in such a way that he would know its theoretical 
probability distribution under the null hypo- 
thesis. If the test statistic produced a number 
t,, and if 

Prob(Test Statistic > t&u11 hypothesis} 

was very small, Fisher would take this as falsify- 
ing the null hypothesis. In effect, this told him 
that the data in the study were capable of 
showing a differences among treatments, and he 
would estimate those differences and comment 
upon them. Fisher denounced the idea that a 
large probability would imply that the null 
hypothesis is true [16]. He insisted that the 
experiment was not designed to allow for accep- 
tance of the null hypothesis. The null hypothesis 
was nothing but a straw man designed to deter- 
mine if the data were sufficiently precise to allow 
for further analysis. 

At the same time, Karl Pearson was using this 
idea to determine whether a set of data belonged 
to a specific probability distribution. He would 
assemble data on, say, cranial capacities of 
skulls from a Roman burial ground, and try to 
fit it to one of a set of distributions based on 
four parameters. His basic tool was the chi 
square goodness of fit test (which he had in- 
vented) [12]. If the fit between the data and the 
hypothesized distribution produced an improb- 
able chi square, he would take another hypoth- 
esized distribution, until he found one with a chi 
square goodness of fit test that was small 
enough to be explained as resulting from chance 
variation. 
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In the late 192Os, his son, Egon Pearson, 
approached the Polish mathematician, Jerzy 
Neyman, with a question. When we use a 
goodness of fit test to compare data to a postu- 
lated distribution, how can we be sure that the 
distribution is “true”, if the goodness of fit test 
is not significant? Neyman and Pearson exam- 
ined this problem over several summers and 
then during one year while Neyman was on 
sabbatical in England. Their correspondence 
and the sequence of papers [17-201 that resulted 
provide an excellent picture of mathematical 
work-in-progress, showing how the problem 
evolved as they considered it. However, this is 
not a paper on the sociology of science, so we 
skip to the final result. 

Or, we could fix one and minimize the other. 
The point made here is that (1) the act of 

optimization is part of the culture of math- 
ematics and may not be appropriate to clinical 
research and (2) what is being optimized is 
arbitrary and one choice may be more 
appropriate for clinical research than another. 

They concluded that the problem of hypoth- 
esis testing consisted of considering two descrip- 
tions of “reality”, a null hypothesis and an 
alternative hypothesis. The data in the exper- 
iment allow the scientist to decide that either the 
null hypothesis or the alternative hypothesis is 
true. The problem, stated this way, revolves 
around three numbers: 

The Neyman-Pearson formulation consists of 
fixing a and minimizing p across the range of 
values that 6 might be expected to occur. A 
procedure that minimizes /3 across all alterna- 
tives is a “uniformly most powerful (UMP) 
test”. However, it turns out that uniformly most 
powerful tests seldom exist. In fact, UMP tests 
do not exist for the comparison of two pro- 
portions, or of two normally distributed means 
with unknown variance, situations that fre- 
quently occur in clinical studies. 

a = Prob{reject the null when the null is true} 
p = Prob{reject the alternative when the 

alternative is true} 
6 = The “distance” between the null and the 

alternative. 

Every scientific discipline has “standard” ap- 
proaches to problems, and mathematics is no 
different. If you have a problem where there is 
a choice of methods and a set of numbers that 
describe the event, you “solve” the problem by 
finding that choice which is “optimum” in terms 
of the set of resulting numbers. To reach an 
“optimum” solution here, you want to reduce 
the level of a and /? as far as possible. The role 
that 6 plays in the optimization depends upon 
how you view the distance between the two 
hypotheses. If you want a method that works 
best when the null and alternative are close 
together, you want a method that optimized for 
small values of 6. If you want a method that 
works best when they are widely separated, then 
you optimize for large values of 6. Another 
possibility is to optimize over all possible values 
of b. How about minimizing a and p? We could 
minimize some function of the two such as 

This “solution” of Neyman’s requires that we 
fix a, the probability of falsely rejecting the null. 
He chose to fix CI because he could then provide 
a frequentist interpretation to the solution. The 
problem he faced was that the p-value we 
calculate from the test statistic is a random 
variable whose value depends upon the random 
fall of the data in the study. A slight change in 
a few patients leads to a different p-value. This 
p-value has no frequentist interpretation, since 
there is no way of constructing a sequence of 
future trials which will have the same p-values. 
However, if we use a fixed cut-off (say 0.05) and 
reject the null whenever the p-value is less than 
that cut-off, the event of rejecting the null 
becomes one with a frequentist interpretation. 

This means, among other things, that there is 
no difference between a p-value of 0.049 and 
one of 0.00001. Both provide the same degree of 
evidence against the null. It means nothing, 
within the framework of the Neyman-Pearson 
formulation, to talk about “very” significant or 
“highly” significant. A result is either significant 
(p < 0.05) or not. Keifer and Arrow [21] have 
shown that it is impossible to make any other 
distinction, as long as we use the frequentist 
definition of probability. 

If we do not use the Neyman-Pearson formu- 
lation, there is no reason to consider a predeter- 
mined cut-off value as important. We protect 
the alpha-level of a study only because the 
purely arbitrary formulation is based upon 
fixing a and minimizing p. 

a+P And so, the Neyman-Pearson formulation 
[a/(1 - &)I[(1 - B)/Pl lays in rubble at our feet. It is an arbitrary 
aP construction with no apparent relationship to the 
etc. needs of clinical research. It rests on the rotten 
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beam of frequent& probability. The basic optim - 
ization that it attempts is impossible in most 
clinical studies. And, it does not allow us to make 
relative judgments about two studies, one of which 
shows a major difference and one of which shows 
a barely “sign$cant ” diflerence. 

In the previous section, we managed to re- 
cover two battered but usable beams from the 
destruction, personal probability and permu- 
tation tests. Can we recover anything from the 
ruins of Neyman-Pearson? Yes, we should give 
careful consideration to Neyman’s basic insight 
that it makes no sense to test a null hypothesis 
without having an alternative against which to 
test it. 

Neyman’s later career exploited that insight. 
He realized that the power of a statistical test, 
its ability to detect a difference in treatments, 
depends very heavily upon how you define the 
class of alternatives. This led to the concept of 
a restricted test. A fuller discussion of restricted 
tests for clinical studies can be found in Ref. 
[22]. It is sufficient to point out, here, that the 
power of a statistical test can be increased by 
increasing the number of patients or by narrow- 
ing the class of alternatives, and that very 
powerful tests can be constructed for small 
studies, if the class of alternatives is sufficiently 
narrow. 

IV. PROPOSALS FOR THE ANALYSIS OF 
CLINICAL DATA 

After the last two sections we stand on a 
windy plain with data from clinical studies 
raining down upon us, holding a few battered 
beams. Can we construct anything from these? 
There are situations where it makes more sense 
to go into deterministic models. If we have a 
known infective agent, which can be cultured 
from the patient’s wound and where the disease 
is there only when the live agent is there, a 
deterministic model is adequate to investigate 
whether a new agent will kill the infective agent 
and “cure” the patient. 

If the disease and patterns of change in that 
disease involve variability, and if there is a good 
chance that any differences in effect will be 
masked by some of that variability, or if we plan 
to apply the treatment to a heterogenous group 
of patients and wish to extrapolate to a larger 
population, then probabilistic models are called 
for. This means that, at the very least, we should 
have a means of distinguishing between treat- 
ment differences that are “true” and those that 

might be the result of random noise. It would 
also be useful to be able to measure the uncer- 
tainty associated with more specific conclusions 
that are reached. 

In order to make use of the few beams I have 
salvaged from the destruction of the previous 
section, I need to distinguish between the use of 
a probabilistic model to determine whether 
there is any signal in the midst of the noise and 
the use of a probabilistic model to provide a 
range of reasonable answers to questions about 
the possible effects of an experimental treatment 
on future patients. Traditionally, the statistical 
literature distinguishes between tests of signifi- 
cance and estimation theory. 

Testing whether there is an eflect 
Logically, one should first establish that the 

clinical trial was adequate in design and ex- 
ecution to show that there was a difference in 
effect between the treatments being compared. 
That is, we need to start with some sort of a 
significance test. If we cannot show that there is 
a difference in effect between treatments, it 
makes no sense to attempt to estimate the 
difference that might be there. To construct a 
significance test, we need to start with a prob- 
ability space. Yet, as shown before, there are 
only two viable probability spaces that we can 
use in a randomized controlled clinical trial. 
One is the set of possible hypotheses and prob- 
abilities that measure the scientist’s personal 
belief in their validity. The other is the set of all 
possible permutations of treatment assignments, 
conditional on the observed set of responses. 
The personal probability space does not provide 
us with an easy and universally accepted method 
for determining when there is signal in the noise. 
The permutation space does. We need only 
compute a test statistic, some number which will 
be large if there is a treatment difference, and 
compute the tail probability of that test statistic 
in the set of all possible permutations of treat- 
ment. If that probability is very small, we 
conclude that we can reject the hypothesis that 
there is no difference between treatments, since 
we have seen a falsifying event. 

But, we don’t choose just any test statistic. 
Neyman’s insights tell us that we can do better 
if we consider as narrow a class of alternatives 
as possible. In addition to defining the null 
hypothesis to be tested, the authors of a proto- 
col should consider what might happen to indi- 
vidual patients if the treatments differ in effect. 
They could start with a set of typical scenarios. 
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Examination of those scenarios should lead 
them to identify a set of measurements that will 
be taken and to consider how those measure- 
ments might appear among patients with treat- 
ment related responses. For instance, suppose 
we want to test a drug which may improve the 
lipid profile against a placebo. We don’t want to 
test whether there is a difference in mean change 
in triglycerides, then in total cholesterol, then in 
HDL cholesterol, etc. Instead we might con- 
struct a set of change patterns across all the 
lipids, and order the patterns in terms of what 
is desired. Then, each patient might be catego- 
rized into a specific pattern, and the test statistic 
would compare the relative proportion of 
patients as a function of increasing category. 

The point of this is that we can use Neyman’s 
insights and Fisher’s definition of probability in 
terms of permutations to construct a reasonably 
powerful significance test, which can be ex- 
pected to detect treatment effects if they are 
discernible. The exact way in which the method 
is invoked is unimportant in this paper. Specific 
methods are described in Ref. [22]. It suffices to 
suggest that powerful permutation tests can be 
constructed, provided the class of alternatives is 
clearly established and narrowly defined. 

Suppose, then, that our significance test pro- 
vides a very small p-value. How small? one 
might ask. The answer to that is determined by 
how much effort the analyst wants to put into 
a study that may not yield useful information. 
The smaller the p-value the greater the chance 
that something useful will be found. Suppose, 
on the one hand, that we have managed to 
compare AIDS patients on placebo and a new 
anti-infective agent for some rare opportunistic 
infection. Since such a study is unlikely to be 
repeated, a p-value of 0.50 might be sufficient to 
suggest that it is useful to examine the data more 
thoroughly. On the other hand, a crossover 
study of single doses of an established bron- 
chodilator that fails to show a significant differ- 
ence between treatments is a study that is easily 
repeated, and it might make more sense to 
expend resources on planning a better study 
than in analyzing non-significant results. 

Estimating efects 
I noted that there are two types of questions 

the probabilistic models can answer. One has 
been dealt with above, how do we know that the 
apparent treatment effects are not due to ran- 
dom noise? If the results of the permutation test 
are “significant”, then we want to answer ques- 

tions about the treatment differences that have 
emerged. I think that those questions should be 
medically meaningful ones. What do I mean by 
“medically meaningful”? Suppose the new treat- 
ment is an antihypertensive. The significance 
test may be based on comparing the average 
change in diastolic blood pressure between the 
two treatments. However, knowing the average 
change in blood pressure is of no value to the 
practicing physician, who will be using the new 
treatment. Average change combines both 
patients who respond and those who do not. If 
the new treatment “works” but only in some 
patients, then the physician who plans to use it 
will want to know whether it will work on a 
given patient. One way is to follow the patient 
until the blood pressure drops. But, how long 
should the patient be followed before deciding 
that the new treatment will not work on this 
patient? That is a medically meaningful 
question. 

But, even if we can find an answer to our 
medically meaningful question, the exact answer 
we calculate from the data will most likely not 
be true. These data refer to the results from a 
small set of patients. They will be used to predict 
results for a larger and more varied set of 
patients on whom the treatment will be used in 
the future. We need to apply probability theory 
to compute a range of answers. Thus, if we 
decide that almost all patients who responded to 
the new treatment did so within two weeks, we 
need to find bounds on that answer so we can 
say, for instance, that we are reasonably sure 
that future patients who are responders will 
respond within 12-26 days. 

How can we put this “smear” of uncertainty 
about the answers we compute from the data? 

Let us dig up a couple of the timbers we’ve 
salvaged in Section II. We can consider personal 
probabilities associated with such statements. 
However, keeping with the human limitations 
on the interpretation of probabilities, we should 
restrict the calculations to 95-99% regions and 
50% regions. Thus, the end result of the analysis 
should be statements like 

I am 50% sure that any patient who will respond 
will do so within 18 days. 

I am 95% sure that, if the patient has 
not responded by 30 days, that 

patient is not a responder. 

We can compute these probabilities with the 
formal use of Bayesian statistics. However, we 
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are only looking for rough answers. The true 
probability associated with a 50% statement 
does not have to be exactly 50%. As long as it 
it closer to 50% than to 95% the statement is 
adequate. We can use standard confidence inter- 
vals to compute such rough informal “smears” 
of uncertainty. These have the advantage that 
the width of the interval reflects both the num- 
ber of patients used and the variability of the 
measure within those patients. 

Suppose, for instance, that we find that left 
handed females under the age of 33 appear to 
have a different response. We can compute 95 
and 50% probability intervals about the esti- 
mate of that response. The smaller number of 
patients in this subset means that the intervals 
will tend to be wide. However, if all of the 
patients in this subset produce the same or 
nearly the same result, the interval will be 
narrow. And, this is as it should be. If we have 
some small subset of patients whose responses 
are uniformly the same, this should mean some- 
thing, even if that subset was identified as a 
result of examination of data from the study. 

Note that I have slid into an aspect of data 
analysis that is an anthema to the standard 
orthodox procedures. I have allowed the data to 
identify subsets of patients with “interesting” 
responses and then used statistical methods to 
estimate the degree of response. 

When would we use 50% confidence inter- 
vals? We would use them under circumstances 
where action is reasonable even if there is only 
a 50: 50 chance that we are correct. Suppose a 
treatment compared to placebo produces 50 and 
95% confidence interval on the odds ratio as 
follows: 

50%:[1.55, 1.981 
95% : [0.93, 2.551 

We are 50% sure that the treatment will im- 
prove the chances of cure by more than half, but 
we cannot be sure that it does any good at all. 
If the treatment is relatively inocuous and not 
very costly, the 50% confidence interval will be 
enough to suggest that it is useful. If, on the 
other hand, the treatment is invasive, or costly, 
or carries serious risk of injury, the fact that a 
95% confidence interval includes 1 .O means that 
we cannot use the data from this study to justify 
use of the treatment. 

V. CONCLUSIONS 

When we examine the results of a controlled 
clinical trial, we are engaging in inductive 

reasoning, and there are many modes of induc- 
tive reasoning. In the end, we will know if a 
particular mode was useful only if the predic- 
tions it makes about future events come true. 
Until we have such verification, there is no 
objective reason to prefer one mode over 
another. Given a particular situation, we can 
often reject some modes as inappropriate be- 
cause it is not clear how to use them to answer 
the questions that have been posed. However, 
no one of the remaining modes has any claim of 
a priori “legitimacy” over the others. 

This article tries to show that there are serious 
flaws in the use of probabilistic models and that 
the rigid formulation of hypothesis testing due 
to Newman and Pearson makes use of arbitrary 
constructs that are probably inappropriate to 
most clinical research. However, the observed 
variability is so great in most clinical studies 
that we can analyze the results best within the 
framework of a probabilistic model. Also, a 
sequence of steps of analysis has been proposed 
that involves probabilistic models but avoid 
most of the philosophical problems. The new 
house has been constructed from solid, if bat- 
tered, beams, but it is a flimsy structure, held 
together by appeals to common sense. The 
scientist who analyzes her data in this mode 
cannot appeal to the “authority” of “correct” 
procedures, and the conclusions could very well 
be wrong-but they might also be right. 

The referees who considered an earlier ver- 
sion of this paper pointed out that generally 
accepted principles of cause and effect in science 
require that each study cannot be considered in 
a vacuum. Unexpected findings are unexpected 
because either previous studies or biological 
theory have not suggested them. In the end, 
scientific cause and effect has to be demon- 
strated with a combination of biological replica- 
tion and reasonable theory to support it. I do 
not disagree. However, this paper has confined 
itself to the problem of analyzing data from a 
single controlled clinical trial. What we see in 
such a trial might be unexpected. If so, we 
should be allowed to note it, since this might be 
the first in a sequence of biological replications. 
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