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SUMMARY 

In addition to the safety, it is essential to establish the causal efficacy of extant and new treatments, and 
well-designed clinical trials are thought by most to be the ‘gold standard’ to accomplish this. Contrary to 
most statisticians’ and regulators’ views, however, I will argue that the concept of causation involved in 
clinical trials is not all that clear. I discuss the manipulability approach to causation, interpreted counterfac- 
tually, which seems to fit causation as it is found in such sciences as physiology, but it has unclear relations to 
a concept of causation proposed by a number of epidemiologists. I characterize ‘epidemiological causation’ 
as probabilistic and formulated at a population level, and dependent on certain general criteria for causation 
as well as study-design considerations. I then attempt to clarify the connections between these concepts of 
causation and Cartwright’s views on complexity and causality, a ‘Bayesian’ framework proposed by Rubin 
and further elaborated by Holland, and Glymour and his colleagues’ recent directed graphical causal 
modelling approach. 

1.  INTRODUCTION 

In addition to the safety, it is essential to establish the causal efJicacy of extant and new 
treatments, and well-designed clinical trials are thought by most to be the ‘gold standard‘ to 
accomplish this. However, the concept of causation that is involved in clinical trials is not, on 
reflection, all that clear. This claim about the deeper level opacity of the notion of causation in 
clinical trials is probably contrary to most scientists’ views, including both statisticians and 
regulators; thus I will need to provide some support for this claim. In this paper I will maintain 
that there is a basic concept of causation that can be made clear which holds for biological and 
medically relevant mechanisms, but that clinical trials rarely (if ever) capture that sense of 
causation; instead they involve a derivative but still very important concept of epidemiological 
causation or clinical causation. I also will argue that non-experimental study designs such as 
historical studies also involve clinical causation, but that because of the chance for additional 
sources of bias, these study designs are less reliable than the randomized controlled clinical trial. 

This paper will make use of what several epidemiologists have written on causation, and I will, 
in the later portions of it, also turn to some insightful approaches to causation relevant to clinical 
trials that have been recently advanced by Nancy Cartwright’ and by Clark Glymour and his 

I will develop my presentation by discussing one Bayesian perspective on clinical 
trials, specifically a thesis initially put forth in 1978 by Rubin4 and subsequently extended by him,’ 
as well as by Pratt and Schlaifer6g7 and Holland.* I interpret Rubin’s framework as a statistical 
implementation of what was developed later in a more philosophical context by Cartwright.’ In 
addition, Glymour and his colleagues3 have very recently taken Rubin’s framework as well as 
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Pratt and Schlaifer’s extensions of that framework, and unified Rubin’s approach with a directed 
graphical causal modelling approach. I believe this unification offers much promise for probing 
the foundations of what I term clinical causation. 

2. THE MANIPULABILITY/COUNTERFACTUAL APPROACH TO CAUSATION 

A review of the various approaches to causation that have been taken by philosophers over the 
past two millennia suggests that the concept of causation may not be unitary. In Aristotle we find 
four different senses of the term, and post-Humean analyses comprise such diverse approaches as 
regularity and conditional accounts, the activity or manipulability view, the (rationalist) logical 
entailment theory, a non-logical entailment version, and the more recent possible world ac- 
counts.’- In my view, several of these diverse approaches need to be drawn on and intertwined 
to constitute an adequately robust analysis of causation for biology and medicine. 
I will not have an opportunity to do that in this article (I have done so elsewhere12), but I believe 
that I can make my points sufficiently well by referring to one such approach to causation which 
is widespread among statisticians, including I think those involved with clinical trials. This is the 
‘manipulability’ approach to causation. It can be found expressed in the second edition of the 
widely used Statistical Package for the Social Sciences or SPSS manual13 in the following manner: 

We propose the following ‘operational’ definition as an initial approximation to the idea 
of causation: X I  is a cause of X o  if and only if X o  can be changed by manipulating 
X1 and X1 alone. We note first that the notion of causation implies prediction but 
prediction of a particular kind. It implies the notion of possible manipulation.’ 

In addition, the S P S S  manual adds: 

The preceding definition of causation suggests both the criterion of causation and the 
means to measure causal effects. First to establish conclusively that X I  is a cause of X o ,  
one must perform an ‘ideal’ experiment in which all the other relevant variables are held 
constant while the causal variable is being manipulated. Second there should be some 
accompanying change in the dependent variable. We will use such validation as the 
ultimate criterion that X I  is the cause of X0.13 

I cite this characterization from the S P S S  manual not because this is an authoritative source for 
either the statistical or philosophical communities, but rather to indicate the widespread accept- 
ance of this manipulation approach to causation. This approach, which is also sometimes referred 
to as the ‘activity theory’, can be found in the earlier work of Hart and Honore,I4 as well as in the 
work of Collingwood,” Gasking16 and von Wright;” it is also stressed in Hollands and R ~ b i n . ~  
It has been criticized as not being able to distinguish causality from mere correlation, but it fails 
on this ground only if the counterfactual interpretation of this approach is disallowed (also see 
Holland’ and Glymour”). The notion of ‘counterfactual’ is a pervasive one in philosophy and is 
of especially critical importance in discussions of causation. (Essentially the term refers to a state 
of affairs which is literally false, but on the assumption of a factually different antecedent 
condition, would be the case.) In their forthcoming book Causation, Prediction, and Search, Spirtes 
et al.’ also defend a manipulability approach, but one which explicitly permits counterfactuals. 
This counterfactual component is also contained in the earlier quote from the SPSS manual, 
where the notion of a possible manipulation was explicitly appealed to. 

That this approach may also be the sense of causation involved in clinical trials receives 
support from Howson and Urbach,lg who point out after describing a comparatively simple 
clinical trial with a control group that: 
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the reason for a control group is obvious. One is interested in the causal efSect of the 
drug on the chance of recovery; so ideally one wants to compare how patients 
responded with the drug with how they would have responded without it. (my emphasis) 

Again it is important to note here that the idea of producing one thing by doing another has had 
a counterfactual aspect added to it. Other philosophers have made a similar point. For example 
Mackie2’ defends the following view: ‘the distinguishing feature of causal sequence is the 
conjunction of necessity-in-the-circumstances with causal priority.’ What this means is that ‘ X  is 
necessary in the circumstances for and causally prior to Y provided that i f X  were kept out ofthe 
world in the circumstances referred to and the world ran on from there, Y would not occur’ (my 
emphasis). 

3. THE EPIDEMIOLOGICAL NOTION OF CAUSATION: PROBABILISTIC 
CAUSATION? 

The epidemiologists’ notion of cause 

Several different groups of epidemiologists such as MacMahon and Pugh,” Fletcher et aLz2 and 
also Kleinbaum et have put forth the interesting idea that epidemiologists use a different 
notion of cause than do, for example, physiologists and molecular biologists, whose notion might 
appropriately be termed ‘physiological causation’ or perhaps, in connection with diseases, 
‘pathophysiological causation’. Though I use the term ‘epidemiological’ in this section and 
throughout this article, I view the randomized controlled clinical trial as falling within the scope 
of the epidemiological study, albeit in a form which is taken to be the best of such epidemiological 
studies in terms of strength and reduction of bias. Epidemiologists MacMahon and Pugh 
suggested that ‘a causal association may usefully be defined as an association between categories 
or events or characteristics in which an alteration in the frequency or quality of one category is 
followed by a change in the other.’2’ Fletcher et al. similarly wrote: ‘when biomedical scientists 
study causes of disease, they usually search for the underlying pathogenetic mechanism or final 
common pathway of disease.’22 Though these authors indicate their agreement with the import- 
ance of this approach to causation, they add that: 

The occurrence of disease is also determined by less specific, more remote causes such as 
genetic, environmental, or behavioral factors, which occur earlier in the chain of events 
leading to a disease. These are sometimes referred to as ‘origins’ of disease and are more 
likely to be investigated by epidemiologists. These less specific and more remote causes 
of disease are the risk factors.22 

Finally let me cite Kleinbaum et al., who write: 

In epidemiology, we use a probabilistic framework to assess evidence regarding causal- 
ity - or more properly to make causal inferences. . . . But a probabilistic viewpoint does 
not automatically negate our belief in a (modified) deterministic world. . . . In other 
words, we need not regard the occurrence of disease as a random process; we employ 
probabilistic considerations to express our ignorance of the causal process and how to 
observe it. 

Because of the lack of certainty in our results, epidemiologists generally use the term 
risk factor instead of cause to indicate a variable that is believed to be related to the 
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probability of an individual’s developing the disease prior to the point of irrevers- 
i b i l i t ~ . ~ ~  

These quotations raise the provocative thesis that the notion of causation may be in some 
interesting methodological and/or substantive sense different for the epidemiologist. If this point 
of view is correct and can be developed further, it may help us make sense of some of the 
epidemiologists’ other comments concerning the criteria by which they assess causal claims, and 
assist us in sharpening our analysis of inference from epidemiological studies. In order to answer 
this question, it will be necessary to examine a notion of causation developed relatively recently 
by several philosophers known as ‘probabilistic causation’. With the aid of this notion, I believe 
we can make some progress in clarifying the interesting differences between the way in which 
epidemiologists as opposed to other biomedical scientists approach the notion of cause. 

Probabilistic causation 

The notion of epidemiological causation appears to me to be superficially similar, though I shall 
argue in an important sense not identical, to what philosophers have recently termed ‘probabil- 
istic causation’. The pioneer in this area is Hans R e i ~ h e n b a c h , ~ ~  and other philosophers of science 
such as Good25 and Suppes26 have developed similar ideas; still others have provided extensive 
criticism of such concepts, among them Salmon.27 Suppes’s approach to probabilistic causation 
is perhaps the most widely known, but my approach will begin from some useful suggestions 
made by Giere2* concerning the relationship between determinism and probabilistic causation in 
populations. I then examine some of C a r t ~ r i g h t ’ s ’ ’ ~ ~  views on Simpson’s paradox and its 
resolution. In particular I want to argue that it is the feature of non-identical individuals in 
populations that is encountered as part of epidemiological research and inference, including 
clinical trials, that introduces the key difference into the account of causation ascribable to such 
systems. 

There are some useful distinctions which appear in Giere’s account which are not explicit in 
most discussions of probabilistic causation with which I am familiar. First, as I shall describe in 
detail in the next paragraph, Giere differentiates between deterministic and stochastic systems, 
but permits both types to exhibit probabilistic causal relationships. This is important since it 
distinguishes two different ways in which determinism may fail to hold for populations (see 
below). This is useful for my account because it licenses a more coherent fit between causation in 
physiologically characterized biological systems and those which we approach from an epi- 
demiological perspective. I shall develop the thesis below that both epidemiologically studied and 
physiologically studied systems can be deterministic, but that the former will display a probabilis- 
tic type of causation best characterized at the population level. This thesis does not, however, 
exclude stochastic components in physiological processes, but 1 will argue that in this domain 
a stronger condition of homogeneity is satisfied that is not met in epidemiological systems. Giere 
also invokes Popper’s ‘propensity’ interpretation of probability for stochastic systems, and in 
particular maintains that this gives a means of directly attributing probabilistic causality to 
individuals rather than to populations. Howson and Urbach” define this propensity interpreta- 
tion as follows: ‘certain types of repeatable experiments are endowed with dispositions or 
propensities to produce fixed limiting frequencies of their various outcomes were they to be 
continued indefinitely under similar conditions.’ Now in my view the propensity interpretation is 
needed only for irreducible singular non-deterministic causation, which, though it may have 
much to recommend it in quantum mechanical situations, is less clearly demanded in biomedical 
contexts, though it is possible that those types of studies involving repeated trials on an individual 
(termed N = 1 studies) might favour this interpretation. I prefer a frequency interpretation of 
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probability which I maintain is more natural in epidemiological contexts where application of 
epidemiological conclusions to individuals is concerned, and though I will return to this issue 
later, it is not a point I can pursue in any depth in the present paper. 

In Giere’s analysis of deterministic systems, a causal relation between C and E is not necessarily 
a universal relation. An example which Giere often uses is smoking and lung cancer. This is a very 
useful example for my purposes since the evidence for such a claim is largely epidemiological, but 
the same general point could be made using any one of the many studies of risk factors for 
diseases. The entities in Giere’s account are individual deterministic systems which can differ in 
their constitution, so that different individuals with the same causal input C (e.g. smokers) may or 
may not exhibit E (e.g. lung cancer). Furthermore, since E may come about from a different cause 
than C, some individuals may exhibit E but not have had C as a causal input. 

For a population of deterministic systems, some number of individuals with input C will 
manifest E and some will not. On Giere’s deterministic approach this is because, for any given 
individual in the population, a universal law L(C)  = E is either true or false, depending on that 
individual’s constitution. (I am assuming that this approach to an individual will still permit the 
individual to exhibit varying outcomes at different times, as in an N = 1 study, since the 
circumstances affecting that individual could alter over time.) An actual population can be 
examined to yield a relative frequency # E / N ,  where N is the number of the individuals in the 
population and # E is the number of individuals exhibiting effect E .  Thus for a population with 
input C the probability that N individuals will exhibit E will be Pc ( E )  = # E / N .  Likewise for 
a population without C as input - where - C is the input ~ the probability that N individuals will 
exhibit E will be P,=(E) = # E / N ,  where this # E may differ from the previous # E. For Giere, 
then, this fraction # E / N  has the properties of a probability. (It might be noted, however, that 
Cartwright’s view, discussed later in this article, differs, arguing that frequencies are not, without 
making some additional assumptions, probabilities.) 

Giere prefers to use idealized counterfactual populations for which outcomes are well defined, 
and he argues that this idea is what one finds in the typical randomized clinical trial, a point with 
which I shall disagree further below. Thus, by hypothesis, two counterfactual populations which 
are counterfactual counterparts of an actual population of interest are envisaged, and one is 
provided with causal factor input C and the other with input - C .  Each counterfactual popula- 
tion will exhibit some number of effects # E  which will be less than its N .  Then GiereZ8 defines 
a positive causal factor as: C is a positive causal factor for E in [population] U if and only if 

P c ( E )  ’ P - c ( E ) .  

A reversed inequality will yield a definition for a negative causal factor, and equality will indicate 
causal irrelevance. (Note that this notion is almost identical to the definition for a prima facie 
cause in Suppes’s26 system. What is different is the interpretation in the context of explicitly 
deterministic systems, and an explicit counterfactual account.) 

Giere also introduces a measure of effectiveness of C for E in population U ,  namely: 

Ef(C, E)  = D S . P C  (El - p-c (El .  

Interestingly, the measure of effectiveness introduced here is essentially identical to what the 
epidemiologists have termed a ‘measure of effect’ for ‘attributable risk‘. Giere does not comment 
on this notion, but see Fletcher et a1.” In my view this account of Giere’s indicates how systems 
that are deterministic at the level of the individual can nevertheless exhibit a type of ‘probabilistic 
causation’ that bears striking analogies to the concept of causation defended by the epidemiol- 
ogists quoted earlier. Giere does not limit his analysis to such deterministic systems, however, and 
does extend his account to cover stochastic systems,” but it will not be necessary in this paper to 
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discuss this extension in any detail. Suffice it to note that the extension to stochastic systems involves 
the propensity interpretation of probability discussed earlier, and that such an extension could 
characterize irreducibly probabilistic systems, such as those encountered in quantum mechanics. 

As I have noted above, Giere prefers to use counterfactual populations for which inputs are 
well defined, and he argues that this situation is what one finds in the typical randomized clinical 
trial. I think this is a mistake on Giere’s part, since such a trial makes use of relevantly similar 
actual populations for which it hopes to control interfering factors (1) by matching and stratifica- 
tion if the factors are known or suspected to operate, and (2) by randomization for all other 
unknown interfering factors. Thus a clinical trial hopes at best only to approximate partially the 
major feature of such counterfactual test populations, in that the investigator hopes to have only 
specified and testable relevant differences between experimental and control groups. The appeal 
to counterfactuality, however, is essential if Simpson’s paradox, to be considered in the next 
paragraph, is to be avoided. I also believe it is precisely this appeal to a counterfactual situation 
that points toward the difference between the epidemiologists’ notion of causation and the 
probabilistic causal notion, though in Giere’s account this distinction is left largely implicit. The 
counterfactual interpretation of causation is also what we find at the basis of what I term 
physiological or scientific causation in this paper; thus both physiological causation and prob- 
abilistic causation is distinguished from epidemiological causation. This distinction is presented 
in an explicit manner in Cartwright’s analysis, to which I now turn. 

Several essays and books by C a r t w r i g h t ’ ~ ~ ~ * ~ ~  ha ve focused increased attention on the 
counterfactual foundation underlying a probabilistic conception of causality. Cartwrightz9 be- 
gins by citing a paradox known as Simpson’s paradox (or the Yule-Cohen-Nagel-Simpson 
paradox, to give all who have identified it their due). This paradox shows that any association 
which holds between two variables in a population which can be used to license a relation of 
probabilistic causation of the type characterized in Reichenbach’s and Suppes’s approaches ‘can 
be reversed in the subpopulations [of that population] by finding a third variable which is 
correlated with both’.29 Her example is relevant to our discussion. Suppose that cigarette 
smoking is a weak cause, in the sense of a risk factor, for myocardial infarctions. But suppose that, 
in the population examined, cigarette smoking is associated with physical exercise, and also 
suppose that such exercise is strongly preventive of infarctions. Then unless subpopulations are 
examined in which the exercise factor is held fixed, cigarette smoking will be concluded to be 
a preventive factor. 

Cartwright’s solution for Simpson’s paradox is to appeal to a counterfactual condition. Simply 
put, she writes: ‘C causes E if and only if C increases the probability of E in every situation which 
is otherwise causally homogeneous with respect to E’.29 (I think that Cartwright’s definition of 
cause here is essentially identical to Giere’s introduced above, with the somewhat superficial 
difference that Cartwright formally includes homogeneity in her definition whereas Giere intro- 
duces the idea implicitly into his counterfactual interpretation.) This notion of a causally 
homogeneous situation has subsequently been re-evaluated and generalized, and also explored 
for its important implications for singular causation in her most recent book.’ 

In a formalism which perhaps indicates more explicitly the nature of the counterfactual 
conditions underlying Cartwright’s definition of causality, she writes that: 

to test for a causal connection between a putative cause C and an effect E,  it is not 
enough to compare P(EIC) with P(EI - C). Rather one must compare 
P(EIC f F1 ... k F,) with P(El - C k F1 ... k F,) for each of the possible arrange- 
ments of E‘s other causes, here designated by F1 . . . , F,. The symbol k F ,  indicates 
a definite choice of either F ,  or - F,.’ 
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These test factors whose presence and absence in addition to C is presupposed would block 
problems associated with Simpson’s paradox. Cartwright adds that this approach suggests a new 
(but generally equivalent to her earlierz9) form of what she terms her CC principle:’ 

CC: C causes E iff P(EIC f F1 ... f F,) > P(EI - C f Fl ... f F J ,  

where { k F1 . . . f F,, C }  is a complete causal set for E .  (Exactly what factors can be allowed into 
such a formulation is somewhat complex. In his book31 Sober points out that unless some 
restrictions are imposed, probabilities may become ill-defined; also see Eells and Sober.3z In 
addition, the factors may need to be temporally indexed.) 

I believe that this approach to blocking the paradoxical effects of selecting subpopulations 
suggests the root of the difference which the epidemiologists perceive between their concept of 
causation as cited above and what might be termed the physiological or scientific (in the sense of 
laboratory or bench science) notion of causation. I believe that the reason is not that epi- 
demiological research involves probabilistic elements, but rather that epidemiology as practised 
cannot be certain that it has examined homogeneous populations, or even sufficiently homogen- 
eous populations such that a treatment effect will be identical for all experimental subjects. 
Physiological causation of the type employed by molecular biologists, say, deals with idealized 
models and often experiments with specially bred strains of organisms, and can thus be reason- 
ably certain that its populations are homogeneous and that equal causes will yield equal effects. 
I will not be able in the context of this paper to develop extensively detailed arguments to support 
this thesis, and must refer the reader to a recent essay of mine33 for such argumentation. Because 
this thesis is central to the present paper, however, and because I believe that sketching the 
difference between what I term physiological causation and epidemiological or clinical causation 
is supported by an elaboration of Cartwright’s views cited above, I want to briefly outline this 
notion of physiological causation. I will begin with two simple examples from muscle physiology. 
I will then explore similar ideas in the statistical literature where such notions are evoked by the 
phrases ‘unit homogeneity’ and ‘assumption of constant effect’, the latter also being known as 
‘additivity’. 

4. PHYSIOLOGICAL CAUSATION IN A COMPLEX WORLD: THE UTILITY O F  
LEVELS IN ACHIEVING SIMPLIFIED CAUSAL GENERALIZATIONS 

Beginning biology students learn about many different types of physiological mechanisms. In 
their first introductions to the subject the mechanisms are idealized and simplified. As they 
become more knowledgeable they learn about the many mutations and variations from the 
simplified mechanisms that exist. If they embark upon research, they also learn to use these 
variations as subtle applications of Mill’s method of difference or Claude Bernard’s method of 
comparative experimentation to license causal claims about living organisms’ processes.34 In 
several other publications I have developed the thesis that what function as a surrogate for 
theories in much of biology, including molecular biology, are families of similarly related models, 
typically of an interlevel character, operating according to generalizations of both broad and 
narrow scopes. lZ3  5 3  36 Th ese generalizations constitute the ‘laws of working’, as it were, of 
fundamental biological mechanisms, but the picture I present in these recent publications 
emphasizes the variation, diversity, and complexity found in fundamental mechanisms. These 
mechanisms may be either deterministic or stochastic. Let me refer to one example of each type 
quite briefly, using very simple accounts which may be slightly misleading in relation to the actual 
complexity of the mechanisms, but which will, I think, make the point I want to here about 
physiological causation. 
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My first exemplar is drawn from muscle phy~iology.~’ We investigate the cause of the increased 
force of contraction which skeletal muscle delivers when stretched prior to the administration of 
a contracting impulse when compared with the same muscle in an unstretched state. We 
determine that the increased force is a consequence of additional overlap, generated by the stretch 
of the muscle, between the two sets of muscle filaments known as actin and myosin comprising the 
sarcomere (filament bundle), since this additional overlap increases the number of reactive sites 
where chemical energy is transformed into the energy of motion. This is known as the sliding 
filament model of muscle physiology. 

The second example comes from neurophysiology. We want an account of how a nerve can 
stimulate a muscle on which it impinges to contract. It is found that the signal for contraction is 
carried by chemical neurotransmitter molecules that are probabilistically released from the nerve 
endings in packets or ‘quanta’, and that these quanta diffuse across the neuromuscular junction 
space and cause the opening of microscopic channels on the muscular side, resulting in an 
electrical signal that causes muscle contraction. Furthermore, ‘fluctuations in release [of the 
quanta] from trial to trial can be accounted for by binomial statistics . . . [and] when the release 
probability p is small . . . the Poisson distribution provides a good description of the fluctu- 
ations.’ This tells us that ‘release of individual quanta from the nerve terminal . . . [is] similar to 
shaking marbles out of a box’ through a small hole.38 This model of a probabilistic process yields 
excellent agreement with what is observed in a variety of micro-experiments at the neuromuscular 
junction involving neural signals causing muscular contractions. 

Both of these models have been extraordinarily well confirmed, and in the form I present them 
satisfy a strong condition of homogeneity. In these models all myofilaments are identical and all 
neurotransmitter quanta are essentially identical. As molecular biology has progressed, scientists 
can now identify genes that are responsible for specific and detailed components of mechanisms 
such as described above, and can clone these genes, sequence them, and identify (or create if 
necessary) new genes with subtle differences that can be used as contrast cases to characterize the 
action of such mechanisms. At this type of level then one can satisfy Cartwright’s CC principle. 

However, biologists are not interested in just molecular mechanisms; they often explore higher 
levels of aggregation, searching for generalizations stateable in language above the molecular 
level. Exactly how to sort out such levels has been contentious among biologists and philosophers 
of biology, but I find the suggestion made by W i r n ~ a t t ~ ~  a useful one. Wimsatt proposed a kind of 
pragmatic notion of a level of organization: 

If the entities at a given level are clustered relatively closely together (in terms of size, or 
some other generalized distance measure in a phase space of their properties) it seems 
plausible to characterize a level as a local maximum of predictability and regularity . . . . 
[Slupposing that . . . regularity and predictability of interactions is graphed as a func- 
tion of size of the interacting entity [for example,] . . . [tlhe levels appear as periodic 
peaks, though of course they might differ in height or ‘~harpness’.~’ (my emphasis) 

Wimsatt provided a graphical representation of this interpretation, and also speculates on other 
less ‘sharp’ and less regular possibilities where the utility of level individuation/separation would 
be much less val~able .~’  

This pragmatic suggestion seems generally correct to me, and also suggests the reason why it is 
difficult to give any general and abstract definition of a level of aggregation, namely that a level of 
aggregation is heavily dependent on the generalizations and theories available to the working 
biomedical scientist. Thus if we were to have no predictive, generalizable knowledge about the 
properties and functions of ribosomes, a ribosomal level of aggregation would not be one worth 
characterizing. 
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The import of Wimsatt’s view for my concerns in the present paper is that simplification and 
reduction of diversity can occur at a variety of levels of aggregation. In order to achieve 
generalizations which are useful we should take them where we can find them. Underlying 
diversity can in a wide number of instances be masked by generalizations formulated at higher 
levels. 

In her two books’,30 Cartwright has stated that ‘nature is complex through and through: even 
at the level of fundamental theory, simplicity is gained only at the cost of misrepresentation.’ 
Cartwright criticizes Glymour et al.’s2 approach to discovering causal regularities from this point 
of view. But it seems to me that this is too quick from a methodological point of view. Simplicity 
considerations I would maintain are useful in selecting for test and elaboration those generaliz- 
ations at appropriate levels where generalizations have reasonably broad scope and are not 
hedged with innumerable qualifications and exceptions. Thus, though I would agree whole- 
heartedly with Cartwright as a defender of enormous diversity and complexity in nature, I also 
believe that we could not function either as lay persons or as scientists if we did not seek out and 
use generalizations that were ‘simple’ and of broad scope. Furthermore I view these generaliz- 
ations not as ‘misrepresentations’ but more as ‘approximations’ which will hold in a sense ‘on the 
average’ or ‘for the most part’. This view is, I think, what is at the root of the difference between 
the type of causation we find exemplified in physiological investigations at the molecular 
level-the examples of the mechanisms I introduced just above-and the causal claims that 
epidemiologists make and that clinicians obtain from the results of clinical trials. However, 
because we cannot satisfy Cartwright’s CC condition we must employ other means of avoiding 
spurious causation, which leads me back to the epidemiologists’ additional recommendations for 
arriving at reliable causal claims. 

5. THE ROLE O F  STUDY DESIGNS AND CRITERIA FOR LICENSING 
EPIDEMIOLOGICAL OR CLINICAL CAUSATION 

I believe it is because epidemiologists, as well as individuals who design and evaluate clinical 
trials, work with not necessarily homogeneous populations that additional means have been 
developed to guard against spurious causality attributions arising from such investigations. Thus 
we can find in standard epidemiological textbooks various guidelines or criteria offered by 
epidemiologists that allow a discrimination between causal claims and accidental associations. 
The interesting feature about these criteria is that they have departed significantly from the 
universalistic deterministic approach represented by Koch’s postulates for causation, which 
I think are their historical protosource, and have become frankly and explicitly probabilistic. 

The first set of such epidemiological criteria for causation appeared in the eighth edition of Sir 
Austin Bradford Hill’s Principles of Medical Statistics in 1966. In the Preface to that edition, 
Hill wrote that: 

A . . . development in recent years has been the increase in research into the environ- 
mental features associated with chronic diseases with the object of determining factors 
in their aetiology. This research based upon the epidemiological-statistical approach 
often raises the difficult problem of distinguishing causation from association. To my 
final chapter. . . I have added a discussion of this problem.40 

Kleinbaum et al.23 suggest that it was in no small part the research leading to the 1964 Surgeon 
General’s report on smoking and health that stimulated the epidemiologists to begin a conscious 
analysis of epidemiological causation. Kleinbaum et al. also cite Hill’s versions of those criteria, 
but I think it would be more useful for our purposes to examine similar but somewhat further 
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developed criteria proposed by Evans4’ and adopted by Lilienfeld and Lilienfeld.42 These criteria 
are as follows. 

Evans’s criteria as modijied by Lilienfeld and Lilienfeld 

(The terms in brackets [ ] are Evans’s original expressions for the similar idea.) 

1 .  Prevalence of the disease should be significantly higher in those exposed to the [putative] 
hypothesized cause than in controls not so exposed (the cause may be present in the 
external environment or as a defect in host responses). 

2. Exposure to the hypothesized cause should be more frequent [present more commonly] 
among those with the disease than in controls without the disease - when all other risk 
factors are held constant. 

3. Incidence of the disease should be significantly higher in those exposed to the cause than in 
those not so exposed, as shown by prospective studies. 

4. Temporally, the disease should follow exposure to the hypothesized causal agent with 
a distribution of incubation periods on a log-normal curve [bell-shaped curve]. 

5. A spectrum of host responses should follow exposure to the hypothesized agent along 
a logical biologic gradient from mild to severe. 

6. A measurable host response following exposure to the hypothesized cause should have 
a high probability of appearing [should regularly appear] in those lacking this before 
exposure (for example, antibody, cancer cells) or should increase in magnitude if present 
before exposure; this response pattern should occur infrequently [should not occur] in 
persons not so exposed. 

7. Experimental reproduction of the disease should occur more frequently [in higher inci- 
dence] in animals or man appropriately exposed to the hypothesized cause than in those 
not so exposed; this exposure may be deliberate in volunteers, experimentally induced in 
the laboratory, or demonstrated in controlled regulation of natural exposure. 

8. Elimination or modification of the hypothesized cause or of the vector carrying it should 
decrease the incidence of the disease (for example, control of polluted water, removal of tar 
from cigarettes). 

9. Prevention or modification of the host’s response on exposure to the hypothesized cause 
should decrease or eliminate the disease (for example, immunization, drugs to lower 
cholesterol, specific lymphocyte transfer factor in cancer). 

10. All of the relationships and findings should make biologic and epidemiologic sense. 

There has been a good deal of contentious discussion in the literature about the value of these 
guidelines, particularly as applied to the smokingllung-cancer studies, and Glymour and his col- 
leagues have in a detailed summary of that case described the earlier statement of the Surgeon 
General’s ‘epidemiological criteria for causality’ as an ‘intellectual disgrace’ because of their vagueness. 

It is of interest to note that the above criteria do not per se refer to the nature of the type of 
epidemiological study, even though Lilienfeld and Lilienfeld do discuss the different types and 
their respective strengths in their book.42 I tend to interpret this partly on historical grounds and 
partly on the basis of two somewhat different orientations one can find among epidemiologists. 
On historical grounds, one can account for the above criteriological approach as the development 
of a line of thinking from Koch through Hill to Evans (and the Lilienfelds). There exists 
a somewhat different though not in any sense opposed approach to scrutinizing the nature of 
causal claims in epidemiology, however, and it places considerably more emphasis on study type 
and design, appealing to the above quoted criteria in a more secondary sense. 
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A good example of this second approach to causation is represented by Fletcher et al.” Their 
account urges we consider the different types of study designs in evaluating whether causal claims 
are warranted or not. The design-based approach to evaluating epidemiological causation 
appears to take its theme from the manner in which prima facie but spurious causal associations 
might arise, and provides an account based on controlling for the erroneous inferences. This 
approach begins in a sense from the question raised by Fletcher et al. about ‘possible explanations 
for clinical observations’, say an observation that A appears to be associated with D. Fletcher et 
al.3 answer is in a later chapter on ‘Cause’ returned to in the section on ‘Establishing cause’ with 
the following type of response: 22 

1. A can (always, often, sometimes) cause D. 
2. There may be some other confounding factor that causes A and D to ‘travel together’, that is, 

3. The association can be due to bias, for example the ways we selected or measured the cases. 
4. The association can be due to chance, for example a run of good or bad luck or a set of 

In the context of this view of bias and other confounders (and chance) as possible factors in the 
production of prima facie causal relations, Fletcher et ~ 1 . ’ ~  cite some of the criteria which are 
found in Evans’s and the Lilienfeld’s approach above. The proponents of this design-based 
approach, however, place considerably more emphasis on the differential strength of experimental 
design, characterizing the case control type of study as the weakest and the randomized clinical 
trial as the strongest. Fletcher et al. write in their section on ‘Establishing cause’ that ‘the most 
important evidence for establishing a cause-and-effect relation is the strength of the research 
design used to establish the relation.’22 The ranking of strength of study type is based in part on 
the likelihood of bias affecting the validity of causal claims based on such studies. To be sure, 
those authors cited under the ‘Criteriological’ heading also discuss different study designs and 
their pitfalls, the primary difference being in the fact that study design does not explicitly figure in 
the assessment of causal claims, as indicated in Evans’s criteria above. 

A most suggestive and quite general account within this second design-based family is 
Feinstein’s proposal. This account is developed over a number of chapters in his relatively recent 
book.43 Feinstein provides what he terms an ‘intellectual model’ that may be used ‘to evaluate the 
scientific quality of causeeeffect research’. The model is depicted in Figure 1 and specifies along 
the top of the model the location of potentially ‘attendant major problems’. Though attention to 
these forms of bias and the reduction of them can be viewed as an attempt to provide 
homogeneity, and thus control for factors that can generate spurious causal claims, the complex- 
ity of the influences on human subjects generally precludes this from being an attainable goal, in 
the sense that Cartwright’s CC condition cannot be met. 

I believe these considerations suggest that what epidemiological studies, including well-designed 
randomized controlled clinical trials, yield is not causation in the same sense that the physiologists 
employ it, but rather what might be termed epidemiological or perhaps clinical causation. (I use the 
term ‘clinical’ causation in addition to ‘epidemiological’ causation because I view this type of 
causation as what is determined by clinical trials. In addition, this type of causation is also what 
the clinician encounters in many of her diagnostic, prognostic, and therapeutic interactions with 
patients.) This type of causation works at the population leuel-at the level of the individual the 
causation is diffuse and typically inaccessible. A generalization associating a cause with an effect 
based on populations which have varying characteristics, in situations of gappy knowledge, and 
in which the association is not universal (either on the basis of variation of initial conditions or on 
purely stochastic grounds), is a claim about population causality in which causal connections 

a common cause. 

coincidences results in an association.22 
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Figure 1. Feinstein’s ‘intellectual model’ to evaluate the scientific quality of cause+ffect research 

hold over populations in which averaging has occurred and in which homogeneity is neither 
guaranteed nor even strongly warranted. This is a different kind of claim than causal claims that 
are grounded on entity identity or universality. In those situations causal generalizations apply to 
each and every individual at the level of the individual, whereas a population-level causal claim 
has validity only for groups over which variations have been averaged. 

This view does not preclude us, since we may adopt an analogue of the Reichenbach and 
Salmon44 notion of ‘weight’, from fictitiously or ‘hypothetically’ ascribing a kind of putative 
individual causation based on population causation through the probabilistic concept of odds or 
risk. This tack allows some degree of manipulability and permits predictions to be made and 
treatment regimens designed, though these are actuarial types of predictions, and are strictly 
speaking empirically applicable to averaged populations. Because of the type of prediction and 
control that such actuarial generalizations permit, and because the generalizations may well 
associate properties temporally, that is, E follows temporally after C,  such generalizations exhibit 
important analogies to fundamental or basic causal generalizations. It is important to keep in 
mind, however, that the forms of putative individual causation, population causation, and basic 
causation (that is, the type meeting Cartwright’s CC condition) are only analogous, and that they 
have their domain of application at two different levels, hold in different populations, and are 
based on different test conditions. These varying concepts of causation do not, in my view, require 
different underlying metaphysical accounts of causation: one will suffice even though there may 
be different ways that such causation is tested for, captured, and represented. See Giere’s28 
account as presented above and also my discussions in my recent essay33 and book.I2 (The only 
situation in which the metaphysical underpinnings of our causation concepts may possibly 
require a new foundation is, I think, in quantum mechanical causation, where there is evidence 
that nature presents us with ‘stochastic bedrock’. That excepted, the account of Giere discussed in 
the text should provide the basis for a deterministic sense of causation consistent with Mackie’s 
analysis2’ that also permits ‘probabilistic causation’.) 

A somewhat similar set of considerations has been urged by several statisticians who have 
considered causation and clinical trials, including Rubin?. ’ Holland8 and I will discuss 
these views and how they relate to the position developed in the present section after I have 
introduced Rubin’s analysis in the following section. 

6. DRAWING THE THREADS TOGETHER: A BAYESIAN APPROACH 

Immediately after Cartwright proposes her CC criterion, she writes that ‘the practical difficulties 
with this criterion are conspicuous.” A bit further on in her book she elaborates: 
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the method does not literally require one to know all the other causes. Rather what you 
must know are some facts about what the other probabilities are in populations that are 
homogeneous with respect to all these other causes, and that you can sometimes find 
out without first having to know what the other causes are. This is the point of the 
randomized experiment. 

A randomized experiment for Cartwright is however a different creature than those who conduct 
clinical trials implement, for an actual clinical trial is at best an approximation to an ideal 
experiment. As I read Cartwright, actual experiments generate frequencies, but these - contra 
Giere28 as discussed above - are not sufficient to license probabilities without the fulfilment of 
additional conditions. She writes: ‘It is not frequencies that yield causes, but probabilities; and it is 
not results in real experiments, where subjects are assigned to groups by a table of random 
numbers, but rather in ideal experiments where randomization is actually achieved.” 

I think the point here is based on a belief (better a hope) that true randomization will control 
for any bias not controllable on the basis of known information. Interestingly Glymour and his 
colleagues’ recent development of their approach to causal modelling also views randomization 
as an important tool to control faulty causal inferences, writing that ‘Random assignment of units 
to experimental treatment categories ensures there is no such [confounding common] causal 
connection; randomization guarantees that in the sample created by experiment other causes of 
Yare not also causes of X’ (where the experiment seeks to determine the effect of a treatment X on 
an effect Y).  But this guarantee as we have heard from some Bayesians is a suspect thesis,46 and 
Glymour elsewhere admits that sample variation in any actual sample may void this guarantee, 
which might only be approached asymptotically through long-term reiterated studies (personal 
communication). I want to close this paper by referring, however, to one Bayesian, Donald Rubin, 
who has defended the role of randomization, since I think that his position comports well with 
both the position advanced by Cartwright as well as the theses developed in this paper. 
Importantly Rubin’s framework has also very recently been unified with the causal modelling 
approach by Glymour and his associates. 

Rubin’s account proposes that we think of a study of T treatments as a complex matrix 
designed to represent in principle all potentially observed values (see Figure 2). For Rubin, ‘causal 
effects are comparisons among values that would have been observed under all possible assign- 
ments of treatments to experimental  unit^.'^ In addition, the matrix will contain information 
about the pre-treatment values, which treatment the patient received ( W ) ,  post-treatment values, 
and indicators for any missing data ( M ) .  In controlled experiments, the ‘which treatment’ column 
reflects two mechanisms: the sampling mechanism (who gets studied) and the treatment assign- 
ment mechanism. For Rubin the determination of causation is predicated on having all possible 
values observed that, if available, would allow the calculation of causal effects. Since this is, he 
adds, ‘impossible’, we must instead employ (Bayesian) statistical inference to estimate causal effects. 

This statistical inference will, however, only work if the assignment mechanism ( W )  and the 
recording mechanism ( M )  are ‘ignorable’. On Rubin’s analysis, for all but very simple (and 
artificial) situations, that is in practical situations, a solution is to employ randomization for the 
W data. This, Rubin argues, can ‘markedly reduce the sensitivity of a valid Bayesian analysis, 
because only a randomized assignment mechanism can be ignorable and yield data having more 
than one treatment condition represented for a distinct value of recorded covariates’! Using an 
alternative deterministic assignment rule would lead, he adds, to difficulties in both study 
execution and analysis. 

Rubin’s4 analysis discussed above has been extended in further work by him5 and also in 
a joint address with Holland47 and by Holland himself.’ Of special relevance to the thesis 
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developed in the previous section concerning two concepts of causation, the physiological and the 
epidemiological, are Holland’s amplifications of Rubin’s views concerning the homogeneity of the 
entities investigated in laboratory science versus clinical trials. Holland introduces what he terms 
the fundamental problem of causal inference as follows: 

It is impossible to obseroe the value of [the response variable for the treated unit] Y,(u) 
and [the response variable for the control unit] Y,(u)on the same unit and, therefore, it 
is impossible to observe the effect of t on u.* 

If the units are identical, however, it is possible to make the causal inference and conclude that 
treatment t causes the effect represented by the difference Y,(u) - yC(u); this is what Holland terms 
the ‘scientific’ solution. (The conditions under which one would find such unit identity are 
discussed in one of my recent essays.33) When this condition of identity or homogeneity of units is 
not satisfied, one may, following Holland’s explication of Rubin, still draw a causal conclusion, 
but now of a statistical sort. Holland writes: 

The statistical solution is different and makes use of the population U in a typically 
statistical way. The aoerage causal efSect, T, of t (relative to c) over U is the expected 
value of the difference Y,(u) - Y,(u) over the u’s in U ;  that is, 

(3) E ( Y ,  - Y,) = T. 
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T defined in (3) is the average causal effect. By the usual rules of probability (3) may also 
be expressed as: 

T = E ( X )  - E(Y,). (4) 

Although this does not look like much, (4) reveals that information on diferent units 
that can be observed can be used to gain knowledge about T.8 

Holland elaborates somewhat further, contrasting the average causal effect of T o n  the units in 
LJ with the causal effect of Ton a specific unity uo. He then introduces the assumption of constant 
effect which, though weaker than the assumption of unit homogeneity, allows the inference that 

T = Y,(u) - yC(u), for all u in U .  

This assumption is also known as the assumption of additivity since it expresses the claim that 
treatment t adds a constant amount T to the control response for each and every unit. This 
additivity assumption is not new, but rather has a venerable history in the literature on clinical 
trials. Holland also notes that this additivity assumption can be tested by dividing U into 
subpopulations: if the Ts vary in the subpopulations then the assumption does not hold. Holland 
views the constant effect or additivity assumption as a weakening of the assumption of unit 
homogeneity, but in my view if we confine our attention to the factors of interest (the Ys) and 
perform a complete subgroup analysis, which will be tantamount to examining each individual 
unit, the distinction between the two assumptions essentially collapses. The additivity assumption 
is an important one, however, and if interpreted as applying to the specijc factors of interest in an 
epidemiological investigation (including randomized controlled clinical trials) does not require 
complete homogeneity of each of the units being compared. It is presumably this feature that led 
Sir David Cox to stress the importance of this assumption, which he terms ‘unit-treatment 
additivity’ in his comments4’ on Holland’s article. 

I interpret Holland’s account of the difference between the scientific solution and the statistical 
solution to the fundamental problem of causal inference, as well as his approach to the 
assumption of unit-treatment additivity, as focusing on the same type of distinction I drew in the 
previous section where I contrasted physiological with epidemiological approaches to causation. 

Rubin’s framework, which Holland elaborates in his remarks cited above, also seems compat- 
ible with Cartwright’s position. Interestingly Rubin’s approach has in addition been very recently 
unified with the causal modelling approach by Glymour and his  colleague^.^ I will not have an 
opportunity in the present paper to describe the causal modelling approach introduced and 
developed by Kiiveri and Speed,48 Werm~th ,~ ’  Lauritzen and Wermuth,” Pearl” and Glymour 
et but references to this literature are provided to enable the interested reader to access this 
domain. Glymour has recently generalized the model developed in his and his associates’ 1987 
volume on Discovering Causal Structure* and now has founded that approach on four conditions 
they term the Markov, Minimality, Faithfulness, and Manipulation conditions. Though space 
does not permit a statement of these conditions in this paper, suffice it to note that Glymour and 
his colleagues claim: 

Rubin’s analysis of treatment assignment determined by a covariate gives exactly the 
result that would be obtained by applying the Manipulation condition. That seems to us 
good reason to think that the structure the Rubin framework is after is caught by the 
Markov, Faithfulness and Manipulation  condition^.^ 

It seems to me that the arguments developed by Glymour and his colleagues are sound ones, and 
that their unification offers much promise for probing the foundations of what I term clinical 
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causation. In addition, the unification may point the way towards resolution of other disagree- 
ments about the foundations of the relations of probabilities and causes between Glymour and 
Cartwright as well. 

It is not the task of the present paper to investigate the issues of experimental design or of 
randomization in depth; that role fell to Peter Urbach and others who address these matters in 
their papers. From the perspective of this paper it seemed useful to show the similarities contained 
in the CC criterion to Rubin’s Bayesian approach to causation, to indicate that at least one 
Bayesian found that a practical solution to the innumerable causes/cases problem was also 
achievable through randomization, and that recent unifications of Rubin’s framework by 
Glymour and his colleagues point the way to additional promising foundational work on these 
issues. As I interpret it, randomization is insurance against bias, and will give us our best shot at 
blocking spurious causal attributions, given that we have adequately controlled for known 
confounders, something that Imre Lakatos might have said would be in accord with his belief that 
there was no instant rationality in ~cience.~’ This, I think, is ultimately the message of the 
epidemiologists, and it is one which I see as consistent with the deepest recent philosophical work 
on causation as well. 

7. SUMMARY AND CONCLUSION 

In this article I have argued that a manipulability approach to causation is the fundamental sense 
of causation and that this type of analysis is committed to an appeal to counterfactual consider- 
ations. Further, I tried to show that the type of causal claims that epidemiologists and clinical 
trialists make do not satisfy the ideal conditions, represented by Cartwright’s CC principle, 
though both scientific or physiological causation as well as probabilistic causation discussed by 
philosophers do meet this condition. I characterized the kind of causation licensed by epi- 
demiological studies including well-designed clinical trials as holding at the level of the popula- 
tion, and only inaccessibly at the level of the individual. How this is possible was illustrated by 
using Giere’s analysis of deterministic individual systems which exhibit probabilistic causal 
relations at the population level. I argued that physiological causation could be either determinis- 
tic or stochastic, illustrating both forms with examples from neuromuscular physiology, and 
maintaining that these systems could meet the CC condition. I reviewed attempts to warrant 
causal claims in epidemiology including clinical trials, identifying criteriological and design-based 
approaches, and suggesting that the latter represented an endeavour at achieving the type of 
homogeneity required by the CC principle, but not one that could be expected to be attained. 
Finally I embedded this analysis in a Bayesian approach to causation pioneered by Rubin and 
developed further by Holland, and linked this analysis to recent causal modelling accounts of 
Glymour and his associates. The extent to which this Bayesian framework can be still further 
developed and joined with various causal modelling approaches to improve our analyses of 
scientific and epidemiological causation points to important future work at  the intersection of 
biology, medicine, and statistics. 
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