Adaptive Trial Designs

Ross Upshur

Truth

• The truth cannot be told so as to be understood but not believed.

William Blake

Randomized Control Trial

Figure 3

Table 2. Eight Common Types of Adaptations

- Stopping early (or late, i.e., extending accrual) with a conclusion of superiority or futility
- Adaptively assigning doses to more efficiently assess the dose-outcome relationship
- Adding or dropping arms or doses
- Seamless phases of drug development within a single trial
- Changing the proportion of patients randomized to each arm
- Adaptively identifying in on an indication or responder population
- Changing accrual rate

Used with permission from Berry D., Nat Rev Clin Oncol 2012; 9: 199-207.

Component	Traditional	Flexible
Interim Analyses	Limited (1 to 2)	Frequent
Randomization	Fixed (1:1, 2:1)	Variable
Number of Arms	Limited (2 to 3)	Few to Many
Use of Incomplete Data	Imputation at Final Analysis	Imputation at All Stages
Philosophy	Frequentist	Bayesian or Frequentist
Control of Error Rates	Via Theoretical Calculation	Via Extensive Simulation

Fig. 2. Probabilistic models further refined.

Cartwright's Causal Criterion

- C causes E if and only if P (E/C)
 +/- {F₁ + F₂...F_N} > P(E/-C) +/- {F₁+ F₂...F_N} where F₁...F_N are a complete set of covariates
- An idealized model that sets out precise ceteris paribus conditions

