Randomized trials

Correlation does not imply causation

@ What does this mean in the context of randomized
experiments and observational studies?

e By the end of this presentation, the goals are to:

o describe causal effects using directed acyclic graphs
@ describe the importance of randomization prcoedures
@ compare intention-to-treat analysis with per-protocol analysis
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Causality at individual level

@ Hernan and Robins (2020) defines " causality at individual
level” as:

o Consider binary exposure A (1: smoker; 0: non-smoker) and
binary outcome Y (1: lung cancer; 0: No lung cancer).

o Let Y2=1 = Y1 be the observed outcome for smoker: likewise
Y2=0 — Y0 pe the observed outcome for non-smoker.

@ The causal effect at the individual level is described as the
difference between Y1 and Y©.

o Together, Y1 and Y? are referred to as potential (or
counterfactual) outcomes.
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Causality at population level (average causal effect)

@ Hernan and Robins (2020) defines " causality at population
level” as:

Definition

e An average causal effect is present if the risk of developing lung
cancer among smokers is different from the risk of developing lung
cancer among non-smokers:

Pr(Y' =1) # Pr(Y° =1)

@ Alternatively, average causal effect may not exist in the
population if risk of death is the same in treatment and
control group: Pr(Y!=1)= Pr(Y®=1).
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Randomized trials

@ Prospective randomized experiments are often conducted to
assess the effectiveness of a treatment.

o /deal randomized experiments with following properties
allow researchers to estimate causal relationships using
associations:

e No loss to follow-up

e No non-compliance of assigned treatment
e Single version of treatment

e Double-blinded treatment assignment

@ Causal inference becomes difficult in some randomized trials
with:

o Informed drop-out (e.g. systematic loss to follow-up for
patients with severe conditions)

o Non-compliance (e.g. participants do not receive intervention
to which they were randomized).
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Components of randomized trials

Table1. A Summary of the Protocol of a Target Trial to Estimate the Effect of Postmenopausal Hormone Therapy on the 5-Year Risk of Breast Cancer

Protocol Component Description
Eligibility criteria Postmenopausal women within 5 years of menopause between the years 2005 and 2010 and with no history of
cancer and no use of hormone therapy in the past 2 years.
Treatment strategies Refrain from taking hormone therapy during the follow-up. Initiate estrogen plus progestin hormone therapy at

baseline and remain on it during the follow-up unless you are diagnosed with deep vein thrombosis,
pulmonary embolism, myocardial infarction, or cancer.

Assignment procedures Participants will be randomly assigned to either strategy at baseline and will be aware of the strategy to which
they have been assigned.

Follow-up period Starts at randomization and ends at diagnosis of breast cancer, death, loss to follow-up, or 5 years after baseline,
whichever occurs first.

Outcome Breast cancer diagnosed by an oncologist within 5 years of baseline.

Causal contrasts of interest  Intention-to-treat effect, per-protocol effect

Analysis plan Intention-to-treat effect estimated via comparison of 5-year cancer risks among individuals assigned to each

treatment strategy. Per-protocol effect estimation requires adjustments for pre- and postbaseline prognostic
factors associated with adherence to the strategies of interest. All analyses will be adjusted for pre- and
postbaseline prognostic factors associated with loss to follow-up (57). This analysis plan implies that the
investigators prespecify and collect data on the adjustment factors.

~ Herndn and Robins (2016), AJE 183(8).
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Treatment assignment using randomization

L A— Y

How does randomization ensure causal effect of treatment A
on outcome Y for baseline confounder L?

@ Randomization ensures balance in both measured and
unmeasured confounders across treated and untreated group.

@ Randomization ensures that the treatment groups are
exchangeable (i.e. same effect measures are expected if the
labels for treated and untreated groups are switched).

@ Randomization ensures that the missing values of potential
(or counterfactual) outcome Y2 occur only due to chance (i.e.
missing at random). This allows the causal effect measures to
be consistently estimated.
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Randomization procedures to achieve balance

Simple cluster randomization
Pairwise or stratified cluster randomization

°
°
@ Crossover or step-wedge cluster randomization*
°

Adaptive cluster randomization

Table 1. Demographic and Clinical Ck istics of the Patients at Baseline.*
Total Lopinavir-Ritonavir Standard Care

Characteristic (N=199) (N=99) (N=100)
Age, median (IQR) — yr 58.0 (49.0-68.0) 58.0 (50.0-68.0) 58.0 (48.0-68.0)
Male sex— no. (%) 120 (60.3) 61 (61.6) 59 (59.0)
Coexisting conditions — no. (%)

Diabetes 23 (11.6) 10 (10.1) 13 (13.0)

Cerebrovascular disease 13 (6.5) 5(5.1) 8 (8.0)

Cancer 6 (3.0) 5(5.1) 1(1.0)
Body temperature, median (IQR) — °C 36.5 (36.4-36.3) 36.5 (36.4-37.0) 36.5 (36.5-36.8)
Fever — no. (%) 182 (91.5) 89 (89.9) 93 (93.0)
Respiratory rate >24/min — no. (%) 37 (18.8) 21 (21.6) 16 (16.0)
Systolic blood pressure <30 mm Hg — no. (%) 2 (1.0) 2(2.0) 0
White-cell count (x10°%/liter) — median (IQR) 7.0 (5.1-9.4) 7.3 (5.3-9.6) 6.9 (4.9-9.1)

A0 0 flibar — i 1041 127 70 B4 1T A\ 72 172 M

Sumeet Kalia Causal effects in randomized trials and observational studies



Observational studies

Causality in observational studies

@ In some instances, randomized experiments may not always be
feasible due to high-cost, time-commitment and ethical
concerns. As a result, observational data may be used to
emulate randomized experiments.

o Causal effect can only be defined for observational studies with
prospective design (since the cause must precede the effect).

Population of interest

Treated Q> Untreated

e

Causation Association
E[re1] E[r=] E[f4=1  E[¥4=0]
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Identifiability assumptions for causal effects

e Conditional exchangability (No unmeasured confounding)
assumption :

o Potential outcomes are independent of treatment assignment
given confounders:

e Violated for infectious disease (e.g. COVID-19, influenza).

@ Positivity assumption:
e Each subject has positive conditional probability of receiving
the treatment given confounders:

@ Violated when clinicians are obligated to prescribe treatment
based on underlying symptoms.

o Consistency assumption:

o Observed outcome is equal to potential outcome under
observed treatment:

o Violated when intervention is different among patients.
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Directed acyclic graphs (i)

@ DAGs are graphical representation of causal effects in which
the treatment, outcome, confounders and other factors are
linked together in a causal network:

Descendant Covariate

‘\ /

Mediator /collider

SN

Instrument ———> Intervention ———— > QOutcome

V\ /V

Confounder
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Directed acyclic graphs (ii)

@ Rule 1: If no variables are conditioned, then the path is
blocked if and only if there exist a collider in the path.

Descendant Covariate

‘\ /

Mediator /collider

N

Instrument ———> Intervention ———— > QOutcome

V\ /V

Confounder
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Directed acyclic graphs (iii)

@ Rule 2: A path without a collider is blocked if a variable is
conditioned in the path

Descendant Covariate

‘\ /

Mediator /collider

N

Instrument ———> Intervention ———— > QOutcome

Sumeet Kalia Causal effects in randomized trials and observational studies




Observational studies

Directed acyclic graphs (iv)

@ Rule 3: If a collider is conditioned in the path, then it does
not block the path

Descendant Covariate

/

Mediator /collider

S

Instrument ———> Intervention ———— > QOutcome

V\ /V

Confounder
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Directed acyclic graphs (v)

@ Rule 4: If a collider has a descendant that has been
conditioned then the collider does not block the path

T~ /

Mediator /collider

SN

Instrument ——— > Intervention ——— > QOutcome

V\ /

Confounder

@ Extensions of DAGs using potential outcomes include single
world intervention graphs (SWIGs).
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Understanding causal effects using DA

z A Figure 9.11 is an example of an intention-to-treat RCT.
—) —Y

r-* Z: Assigned

/ - treatment ITT RCT's can be almost thought of as an RCT with a potentially
misclassified treaiment. However, unlike a misclassifed treatment, the
Figure 9.11 A Heart treatment assignment Z has a causal effect on the outcome Y, both

Transplant (a) by influencing the actual treatment A, and
(b) by influencing study participants who know what Z is and change their
Y: 5-year behavior accordingly.
Mortality Hence, the causal effect of Z on Y depends on the strength of the arrow
Z =Y thearrow Z — A andthearrow A — Y.
(Ignore U here)
Double-blinding attempts to remove Z — Y (Figure 9.12)

Z—>A—>Y
r >

—
9}
Figure 9.12
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Understanding causal effects using DA

Z: Assigned
treatment

A Heart
Transplant

\g_ Y 5.year This example is of a conventional per-protocol analysis, a second
/ - - method to measure per-protocol effect
Mortality

U: liness Conventional per-protocol analyses limit the population to those who

. adhered to the study protocol, subsetting to those for whom A = Z

Severity
d)

. M (unmeasured) This method induces a selection bias on A = Z, and thus still requires
igure 9 L Measureq | 2diustment on L
factors that
mediate U

8 Selection
filter (A=Z)
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Marginal Structural models

@ Marginal structural models use counterfactual outcomes,
rather than observed outcomes, to specify the causal effect of
an exposure.

@ These are "marginal” models because they model the
marginal distribution of the counterfactual outcome and
"structural” models because they model the probabilities of
counterfactual outcomes.

@ Create pseudo-population where the relationship between the
confounder and the exposure is broken:
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Why randomization is preferred?

o Identifiability conditions of causal inference are enforced in the
design of randomized trials and thus causal relationships can
be estimated using associations.

o Identifiability conditions of causal inference are needed to be
assumed in observational studies and thus causal relationship
can not be estimated using associations.

e "No unmeasured confounding” and " consistency” assumptions
are untestable in observational studies;

e Violation of "positivity” assumption can be determined by
data exploration;

o The validity of DAGs can not be tested to explain the real-life
phenomena. We assume DAG holds to estimate the causal
effects.
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